
    
      Navigation

      	
          index
	
          modules |
	
          next |
	pypdfocr 0.9.1 documentation »


    

      
        
  Table Of Contents

  	PyPDFOCR API Reference (version 0.9.1)


	Recent Changes
	Testing
	PyPDFOCR - Tesseract-OCR based PDF filing	Usage:	Single conversion:
	Folder monitoring:
	Automatic filing:
	Filing based on filename match:	Configuration file for automatic PDF filing



	Evernote upload:	Evernote authentication token
	Evernote filing usage
	Evernote filing configuration file



	Auto email



	Advanced options	Fine-tuning Tesseract/Ghostscript/others
	Handling disk time-outs



	Installation	Using pip
	Manual install
	External Dependencies



	Disclaimer



	Changelog
	Todo list
	Indices and tables



  Next topic

  pypdfocr package

  This Page

  	Show Source



  Quick search

    
      
      
      
      
    

    
    Enter search terms or a module, class or function name.
    




        

      


    
      
        
          
            
  
PyPDFOCR API Reference (version 0.9.1)¶

Contents:


	pypdfocr package	Submodules
	pypdfocr.pypdfocr module
	pypdfocr.pypdfocr_gs module
	pypdfocr.pypdfocr_pdf module
	pypdfocr.pypdfocr_pdffiler module
	pypdfocr.pypdfocr_tesseract module
	pypdfocr.pypdfocr_watcher module
	pypdfocr.pypdfocr_preprocess module
	pypdfocr.pypdfocr_filer module
	pypdfocr.pypdfocr_filer_dirs module
	pypdfocr.pypdfocr_filer_evernote module
	Module contents










Recent Changes¶

	Version	Date	Changes
	v0.9.1	10/11/16	Fixes (#43, #41)
	v0.9.0	2/29/16	Fixed rotated page text, Mac OS X invisible fonts, and pdf merge slowdown
	v0.8.5	2/21/16	Better ctrl-c and cleanup behavior
	v0.8.4	2/18/16	Maintenance release
	v0.8.3	2/18/16	Bug fix for multiprocessing on windows, ctrl-c interrupt, and integer keywords
	v0.8.2	12/8/14	Fixed imagemagick invocation on windows.  Parallelized preprocessing and tesseract execution





Testing¶


Coverage





PyPDFOCR - Tesseract-OCR based PDF filing¶

     

This program will help manage your scanned PDFs by doing the following:

	Take a scanned PDF file and run OCR on it (using the Tesseract OCR
software from Google), generating a searchable PDF
	Optionally, watch a folder for incoming scanned PDFs and
automatically run OCR on them
	Optionally, file the scanned PDFs into directories based on simple
keyword matching that you specify
	Evernote auto-upload and filing based on keyword search
	Email status when it files your PDF


More links:

	Blog @ virantha.com
	Documentation @ gitpages
	Source @ github



Usage:¶


Single conversion:¶

pypdfocr filename.pdf

--> filename_ocr.pdf will be generated



If you have a language pack installed, then you can specify it with the
-l option:

pypdfocr -l spa filename.pdf






Folder monitoring:¶

pypdfocr -w watch_directory

--> Every time a pdf file is added to `watch_directory` it will be OCR'ed






Automatic filing:¶

To automatically move the OCR’ed pdf to a directory based on a keyword,
use the -f option and specify a configuration file (described below):

pypdfocr filename.pdf -f -c config.yaml



You can also do this in folder monitoring mode:

pypdfocr -w watch_directory -f -c config.yaml






Filing based on filename match:¶

If no keywords match the contents of the filename, you can optionally
allow it to fallback to trying to find keyword matches with the PDF
filename using the -n option. For example, you may have receipts always
named as receipt_2013_12_2.pdf by your scanner, and you want to move
this to a folder called ‘receipts’. Assuming you have a keyword
receipt matching to folder receipts in your configuration file
as described below, you can run the following and have this filed even
if the content of the pdf does not contain the text ‘receipt’:

pypdfocr filename.pdf -f -c config.yaml -n




Configuration file for automatic PDF filing¶

The config.yaml file above is a simple folder to keyword matching text
file. It determines where your OCR’ed PDFs (and optionally, the original
scanned PDF) are placed after processing. An example is given below:

target_folder: "docs/filed"
default_folder: "docs/filed/manual_sort"
original_move_folder: "docs/originals"

folders:
    finances:
        - american express
        - chase card
        - internal revenue service
    travel:
        - boarding pass
        - airlines
        - expedia
        - orbitz
    receipts:
        - receipt



The target_folder is the root of your filing cabinet. Any PDF moving
will happen in sub-directories under this directory.

The folders section defines your filing directories and the keywords
associated with them. In this example, we have three filing directories
(finances, travl, receipts), and some associated keywords for each
filing directory. For example, if your OCR’ed PDF contains the phrase
“american express” (in any upper/lower case), it will be filed into
docs/filed/finances

The default_folder is where the OCR’ed PDF is moved to if there is
no keyword match.

The original_move_folder is optional (you can comment it out with
# in front of that line), but if specified, the original scanned PDF
is moved into this directory after OCR is done. Otherwise, if this field
is not present or commented out, your original PDF will stay where it
was found.

If there is any naming conflict during filing, the program will add an
underscore followed by a number to each filename, in order to avoid
overwriting files that may already be present.






Evernote upload:¶


Evernote authentication token¶

To enable Evernote support, you will need to get a developer token for
your Evernote
account.. You
should note that this script will never delete or modify existing notes
in your account, and limits itself to creating new Notebooks and Notes.
Once you get that token, you copy and paste it into your configuration
file as shown below




Evernote filing usage¶

To automatically upload the OCR’ed pdf to a folder based on a keyword,
use the -e option instead of the -f auto filing option.

pypdfocr filename.pdf -e -c config.yaml



Similarly, you can also do this in folder monitoring mode:

pypdfocr -w watch_directory -e -c config.yaml






Evernote filing configuration file¶

The config file shown above only needs to change slightly. The folders
section is completely unchanged, but note that target_folder is the
name of your “Notebook stack” in Evernote, and the default_folder
should just be the default Evernote upload notebook name.

target_folder: "evernote_stack"
default_folder: "default"
original_move_folder: "docs/originals"
evernote_developer_token: "YOUR_TOKEN"

folders:
    finances:
        - american express
        - chase card
        - internal revenue service
    travel:
        - boarding pass
        - airlines
        - expedia
        - orbitz
    receipts:
        - receipt








Auto email¶

You can have PyPDFOCR email you everytime it converts a file and files
it. You need to first specify the following lines in the configuration
file and then use the -m option when invoking pypdfocr:

mail_smtp_server: "smtp.gmail.com:587"
mail_smtp_login: "virantha@gmail.com"
mail_smtp_password: "PASSWORD"
mail_from_addr: "virantha@gmail.com"
mail_to_list:
    - "virantha@gmail.com"
    - "person2@gmail.com"








Advanced options¶


Fine-tuning Tesseract/Ghostscript/others¶

You can specify Tesseract and Ghostscript executable locations manually, as
well as the number of concurrent processes allowed during preprocessing and
tesseract.  Use the following in your configuration file:

tesseract:
    binary: "/usr/bin/tesseract"
    threads: 8

ghostscript:
    binary: "/usr/local/bin/gs"

preprocess:
    threads: 8






Handling disk time-outs¶

If you need to increase the time interval (default 3 seconds) between new
document scans when pypdfocr is watching a directory, you can specify the following
option in the configuration file:

watch:
    scan_interval: 6








Installation¶


Using pip¶

PyPDFOCR is available in PyPI, so you can just run:

pip install pypdfocr



Please note that some of the 3rd-party libraries required by PyPDFOCR wiill
require some build tools, especially on a default Ubuntu system.  If you run
into any issues using pip install, you may want to install the
following packages on Ubuntu and try again:

	gcc
	libjpeg-dev
	zlib-bin
	zlib1g-dev
	python-dev


For those on Windows, because it’s such a pain to get all the PIL
and PDF dependencies installed, I’ve gone ahead and made an executable
called
pypdfocr.exe

You still need to install Tesseract, GhostScript, etc. as detailed below in
the external dependencies list.




Manual install¶

Clone the source directly from github (you need to have git installed):

git clone https://github.com/virantha/pypdfocr.git



Then, install the following third-party python libraries:

	Pillow (Python Imaging Library) https://pillow.readthedocs.org/en/3.1.x/
	ReportLab (PDF generation library)
http://www.reportlab.com/opensource/
	Watchdog (Cross-platform fhlesystem events monitoring)
https://pypi.python.org/pypi/watchdog
	PyPDF2 (Pure python pdf library)


These can all be installed via pip:

pip install Pillow
pip install reportlab
pip install watchdog
pip install pypdf2



You will also need to install the external dependencies listed below.




External Dependencies¶

PyPDFOCR relies on the following (free) programs being installed and in
the path:

	Tesseract OCR software https://code.google.com/p/tesseract-ocr/
	GhostScript http://www.ghostscript.com/
	ImageMagick http://www.imagemagick.org/
	Poppler http://poppler.freedesktop.org/  (Windows)


Poppler is only required if you want pypdfocr to figure out the original PDF resolution
automatically; just make sure you have pdfimages in your path.   Note that the
xpdf provided pdfimages does not work for this,
because it does not support the -list option to list the table of images in a PDF file.

On Mac OS X, you can install these using homebrew:

brew install tesseract
brew install ghostscript
brew install poppler
brew install imagemagick



On Windows, please use the installers provided on their download pages.

** Important ** Tesseract version 3.02.02 or newer required
(apparently 3.02.01-6 and possibly others do not work due to a hocr
output format change that I’m not planning to address). On Ubuntu, you
may need to compile and install it manually by following these
instructions

Also note that if you want Tesseract to recognize rotated documents (upside down, or rotated 90 degrees)
then you need to find your tessdata directory and do the following:

cd /usr/local/share/tessdata
cp eng.traineddata osd.traineddata



osd stands for Orientation and Script Detection, so you need to copy the .traineddata
for whatever language you want to scan in as osd.traineddata.  If you don’t do this step,
then any landscape document will produce garbage






Disclaimer¶

While test coverage is at 84% right now, Sphinx docs generation is at an
early stage. The software is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.






Changelog¶

	Version	Date	Changes
	v0.9.1	10/11/16	Fixes (#43, #41)
	v0.9.0	2/29/16	Fixed rotated page text, Mac OS X invisible fonts, and pdf merge slowdown
	v0.8.5	2/21/16	Better ctrl-c and cleanup behavior
	v0.8.4	2/18/16	Maintenance release
	v0.8.3	2/18/16	Bug fix for multiprocessing on windows, ctrl-c interrupt, and integer keywords
	v0.8.2	12/8/14	Fixed imagemagick invocation on windows.  Parallelized preprocessing and tesseract execution
	v0.8.1	12/5/14	Added –skip-preprocess option, scan_interval option, and fixed too many open files bug during page overlay
	v0.8.0	10/27/14	Added preprocessing to clean up prior to tesseract, bug fixes on file names with spaces/dots
	v0.7.6	9/10/14	Fixed issue 17 rotation bug
	v0.7.5	8/18/14	Update for Tesseract 3.03 .hocr filename change
	v0.7.4	3/28/14	Bug fix on pdf assembly
	v0.7.3	3/27/14	Modified internals to use single image per page (instead of multipage tiff). Also enabled orientation detection
	v0.7.2	3/26/14	Switched from Pil to Pillow. Now uses original images from PDF in output pdf (no dpi/color/quality changes!)
	v0.7.1	3/25/14	OCR Language is now an option
	v0.7.0	3/25/14	Now honors original pdf resolution
	v0.6.1	2/16/14	Bug fix for pdfs with only numbers in the filename
	v0.6.0	1/16/14	Added filing based on filename match as fallback, added tesseract version check
	v0.5.4	1/12/14	Fixed bug with reordering of text pages on certain platforms(glob)
	v0.5.3	12/12/13	Fix to evernote server specification
	v0.5.2	12/08/13	Fix to lowercase keywords
	v0.5.1	11/02/13	Fixed a bunch of windows critical path handling issues
	v0.5.0	10/30/13	Email status added, 90% test coverage
	v0.4.1	10/28/13	Made HOCR parsing more robust
	v0.4.0	10/28/13	Added early Evernote upload support
	v0.3.1	10/24/13	Path fix on windows
	v0.3.0	10/23/13	Added filing of converted pdfs using a configuration file to specify target directories based on keyword matches in the pdf text
	v0.2.2	10/22/13	Added a console script to put the pypdfocr script into your bin
	v0.2.1	10/22/13	Fix to initial packaging problem.
	v0.2.0	10/21/13	Initial release.





Todo list¶

	#43 version check for tesseract
	On windows, search for pdfimages and imagemagick instead of relying on path
	Split up into flow steps
	Run more robustness tests for watching networked shares
	Add more docstrings
	Add more option specifiers to tesseract and ghostscript





Indices and tables¶

	Index
	Module Index
	Search Page






          

        

      

      

    

    
      Navigation

      	
          index
	
          modules |
	
          next |
	pypdfocr 0.9.1 documentation »


    

    
        © Copyright 2013, Author.
      Created using Sphinx 1.2b3.
    

  